High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo.

نویسندگان

  • Clinton B McCracken
  • Anthony A Grace
چکیده

High-frequency deep-brain stimulation (DBS) of the nucleus accumbens (NAc) region is an effective therapeutic avenue for patients with treatment-resistant obsessive-compulsive disorder (OCD). Imaging studies suggest that DBS acts by suppressing the aberrant metabolism in the orbitofrontal cortex (OFC) that is a hallmark of OCD; however, little is known about the mechanisms by which this occurs. We examined the effects of 30 min NAc DBS at 130 Hz on spontaneously active OFC neurons and local field potentials (LFPs) in addition to evoked responses elicited by single-pulse stimulation of the NAc or mediodorsal thalamus (MD) in urethane-anesthetized rats. NAc DBS reduced the mean firing rate of OFC neurons, although neurons receiving monosynaptic input from MD were less affected and some putative interneurons were excited by DBS. Single-pulse stimulation of the NAc produced a robust inhibition in OFC neurons that was attenuated after DBS, whereas excitatory responses were unchanged. In contrast, after DBS inhibitory responses evoked from MD were unchanged, whereas excitatory responses were enhanced. NAc-evoked LFP responses were potentiated after DBS, whereas MD-evoked LFP responses were unchanged. NAc DBS also enhanced OFC spontaneous LFP oscillatory activity in the slow (0.5-4 Hz) frequency band. These results suggest that DBS of the NAc region may alleviate OCD symptoms by reducing activity in subsets of OFC neurons, potentially by driving recurrent inhibition though antidromic activation of corticostriatal axon collaterals. Moreover, selective potentiation of input to these inhibitory circuits may also contribute to the therapeutic effects produced by DBS in OCD patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo.

Deep brain stimulation of the nucleus accumbens (NAC) region is an effective therapeutic avenue for several psychiatric disorders that are not responsive to traditional treatment strategies. Nonetheless, the mechanisms by which DBS achieves therapeutic effects remain unclear. We showed previously that high-frequency (HF) NAC DBS suppressed pyramidal cell firing and enhanced slow local field pot...

متن کامل

Effect of Electrical Stimulation and Lesion of Nucleus Accumbens on EEG of Intact and Addicted Rats

Introduction: The nucleus accumbens is involved in various functions ranging from motivation and reward to feeding and drug addiction. Some researchers have also suggested that this region has some roles in consciousness. In the present study, the effect of electrical stimulation and lesion of nucleus accumbens on Electroencephalogram waves (EEG) of addict and non-addict rats was investigated. ...

متن کامل

Deep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone

Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities.Materials and Methods: Forty Male Wistar rats (220–2...

متن کامل

Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus acc...

متن کامل

Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 46  شماره 

صفحات  -

تاریخ انتشار 2007